What does holonomy mean?
Definitions for holonomy
ho·lo·no·my
This dictionary definitions page includes all the possible meanings, example usage and translations of the word holonomy.
Did you actually mean holonymy or holonym?
Wiktionary
holonomynoun
Given a smooth closed curve C on a surface M, and picking any point P on that curve, the holonomy of C in M is the angle by which some vector turns as it is parallel transported along the curve C from point P all the way around and back to point P.
Wikipedia
Holonomy
In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civita connection in Riemannian geometry (called Riemannian holonomy), holonomy of connections in vector bundles, holonomy of Cartan connections, and holonomy of connections in principal bundles. In each of these cases, the holonomy of the connection can be identified with a Lie group, the holonomy group. The holonomy of a connection is closely related to the curvature of the connection, via the Ambrose–Singer theorem. The study of Riemannian holonomy has led to a number of important developments. Holonomy was introduced by Élie Cartan (1926) in order to study and classify symmetric spaces. It was not until much later that holonomy groups would be used to study Riemannian geometry in a more general setting. In 1952 Georges de Rham proved the de Rham decomposition theorem, a principle for splitting a Riemannian manifold into a Cartesian product of Riemannian manifolds by splitting the tangent bundle into irreducible spaces under the action of the local holonomy groups. Later, in 1953, Marcel Berger classified the possible irreducible holonomies. The decomposition and classification of Riemannian holonomy has applications to physics and to string theory.
Wikidata
Holonomy
In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy, and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civita connection in Riemannian geometry, holonomy of connections in vector bundles, holonomy of Cartan connections, and holonomy of connections in principal bundles. In each of these cases, the holonomy of the connection can be identified with a Lie group, the holonomy group. The holonomy of a connection is closely related to the curvature of the connection, via the Ambrose–Singer theorem. The study of Riemannian holonomy has led to a number of important developments. The holonomy was introduced by Cartan in order to study and classify symmetric spaces. It was not until much later that holonomy groups would be used to study Riemannian geometry in a more general setting. In 1952 Georges de Rham proved the de Rham decomposition theorem, a principle for splitting a Riemannian manifold into a Cartesian product of Riemannian manifolds by splitting the tangent bundle into irreducible spaces under the action of the local holonomy groups. Later, in 1953, M. Berger classified the possible irreducible holonomies. The decomposition and classification of Riemannian holonomy has applications to physics, and in particular to string theory.
Numerology
Chaldean Numerology
The numerical value of holonomy in Chaldean Numerology is: 3
Pythagorean Numerology
The numerical value of holonomy in Pythagorean Numerology is: 9
Popularity rank by frequency of use
Translations for holonomy
From our Multilingual Translation Dictionary
Get even more translations for holonomy »
Translation
Find a translation for the holonomy definition in other languages:
Select another language:
- - Select -
- 简体中文 (Chinese - Simplified)
- 繁體中文 (Chinese - Traditional)
- Español (Spanish)
- Esperanto (Esperanto)
- 日本語 (Japanese)
- Português (Portuguese)
- Deutsch (German)
- العربية (Arabic)
- Français (French)
- Русский (Russian)
- ಕನ್ನಡ (Kannada)
- 한국어 (Korean)
- עברית (Hebrew)
- Gaeilge (Irish)
- Українська (Ukrainian)
- اردو (Urdu)
- Magyar (Hungarian)
- मानक हिन्दी (Hindi)
- Indonesia (Indonesian)
- Italiano (Italian)
- தமிழ் (Tamil)
- Türkçe (Turkish)
- తెలుగు (Telugu)
- ภาษาไทย (Thai)
- Tiếng Việt (Vietnamese)
- Čeština (Czech)
- Polski (Polish)
- Bahasa Indonesia (Indonesian)
- Românește (Romanian)
- Nederlands (Dutch)
- Ελληνικά (Greek)
- Latinum (Latin)
- Svenska (Swedish)
- Dansk (Danish)
- Suomi (Finnish)
- فارسی (Persian)
- ייִדיש (Yiddish)
- հայերեն (Armenian)
- Norsk (Norwegian)
- English (English)
Word of the Day
Would you like us to send you a FREE new word definition delivered to your inbox daily?
Citation
Use the citation below to add this definition to your bibliography:
Style:MLAChicagoAPA
"holonomy." Definitions.net. STANDS4 LLC, 2025. Web. 4 Jan. 2025. <https://www.definitions.net/definition/holonomy>.
Discuss these holonomy definitions with the community:
Report Comment
We're doing our best to make sure our content is useful, accurate and safe.
If by any chance you spot an inappropriate comment while navigating through our website please use this form to let us know, and we'll take care of it shortly.
Attachment
You need to be logged in to favorite.
Log In