What does celestial navigation mean?
Definitions for celestial navigation
ce·les·tial nav·i·ga·tion
This dictionary definitions page includes all the possible meanings, example usage and translations of the word celestial navigation.
Princeton's WordNet
celestial navigation, astronavigationnoun
navigating according to the positions of the stars
Wiktionary
celestial navigationnoun
Navigation by using the positions of the stars and other heavenly bodies.
Wikipedia
Celestial navigation
Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space (or on the surface of the Earth) without having to rely solely on estimated positional calculations, commonly known as "dead reckoning", made in the absence of satellite navigation or other similar modern electronic or digital positioning means. Celestial navigation uses "sights", or timed angular measurements, taken typically between a celestial body (e.g. the Sun, the Moon, a planet, or a star) and the visible horizon. Celestial navigation can also take advantage of measurements between celestial bodies without reference to the Earth horizon, such as when the Moon and other selected bodies are used in the practice called "lunars" or lunar distance method, used for determining precise time when time is unknown. Celestial navigation by taking sights of the Sun and the horizon whilst on the surface of the Earth is commonly used, providing various methods of determining position, one of which is the popular and simple method called "noon sight navigation"—being a single observation of the exact altitude of the Sun and the exact time of that altitude (known as "local noon")—the highest point of the Sun above the horizon from the position of the observer in any single day. This angular observation combined with knowing its simultaneous precise time referred to the time at the prime meridian directly renders a latitude and longitude fix at the time and place of the observation by simple mathematical reduction. The Moon, a planet, Polaris, or one of the 57 other navigational stars whose coordinates are tabulated in any of the published nautical almanac or air almanacs can also accomplish this same goal. Celestial navigation accomplishes its purpose by use of angular measurements (sights) between celestial bodies and the visible horizon to locate one's position on the Earth, whether on land, in the air or at sea. In addition, observations between stars and other celestial bodies accomplished the same results whilst in space – and was used extensively in the Apollo space program and is still used on many contemporary satellites. Equally, celestial navigation may be used whilst on other planetary bodies to determine position on their surface, using their local horizon and suitable celestial bodies with matching reduction tables and knowledge of local time. For navigation by celestial means when on the surface of the Earth for any given instant in time a celestial body is located directly over a single point on the Earth's surface. The latitude and longitude of that point is known as the celestial body's geographic position (GP), the location of which can be determined from tables in the nautical or air almanac for that year. The measured angle between the celestial body and the visible horizon is directly related to the distance between the celestial body's GP and the observer's position. After some computations, referred to as sight reduction, this measurement is used to plot a line of position (LOP) on a navigational chart or plotting worksheet, the observer's position being somewhere on that line. (The LOP is actually a short segment of a very large circle on Earth that surrounds the GP of the observed celestial body. An observer located anywhere on the circumference of this circle on Earth, measuring the angle of the same celestial body above the horizon at that instant of time, would observe that body to be at the same angle above the horizon.) Sights on two celestial bodies give two such lines on the chart, intersecting at the observer's position (actually, the two circles would result in two points of intersection arising from sights on two stars described above, but one can be discarded, since it will be far from the estimated position—see the figure at example below). Most navigators will use sights of three to five stars, if available, since that will result in only one common intersection and minimizes the chance of error. That premise is the basis for the most commonly used method of celestial navigation, referred to as the "altitude-intercept method". At least three points must be plotted. The plot intersection will usually provide a triangle where the exact position is inside of it. Accuracy of the sights is indicated by the size of the triangle. Joshua Slocum used both noon sight and star sight navigation to determine his current position during his voyage, the first recorded single-handed circumnavigation of the world. In addition he used the lunar distance method (or "lunars") to determine and maintain known time at Greenwich (the prime meridian), thereby keeping his "tin clock" reasonably accurate, and therefore his position fixes accurate. Celestial navigation can only determine longitude when time at the prime meridian is accurately known. The more accurately time at the prim
ChatGPT
celestial navigation
Celestial navigation is a method of navigation used by sailors and explorers to determine their position and direction on Earth. It involves the observation of celestial bodies such as the Sun, Moon, planets, or stars, their angles relative to the horizon, and using the collected data with the principles of geometry, trigonometry, and the concept of time to calculate longitude, latitude, and course. These observations are typically done with instruments like sextants and astrolabes, and often involve reference to nautical almanacs and tables. This method has been used for centuries, before the advent of GPS technology.
Wikidata
Celestial navigation
Celestial navigation, also known as astronavigation, is a position fixing technique that has evolved over several thousand years to help sailors cross oceans without having to rely on estimated calculations, or dead reckoning, to know their position. Celestial navigation uses "sights," or angular measurements taken between a celestial body and the visible horizon. The sun is most commonly used, but navigators can also use the moon, a planet or one of 57 navigational stars whose coordinates are tabulated in the Nautical Almanac and Air Almanacs. Celestial navigation is the use of angular measurements between celestial bodies and the visible horizon to locate one's position on the globe, on land as well as at sea. At a given time, any celestial body is located directly over one point on the Earth's surface. The latitude and longitude of that point is known as the celestial body’s geographic position, the location of which can be determined from tables in the Nautical or Air Almanac for that year. The measured angle between the celestial body and the visible horizon is directly related to the distance between the celestial body's GP and the observer's position. After some computations, referred to as "sight reduction," this measurement is used to plot a line of position on a navigational chart or plotting work sheet, the observer's position being somewhere on that line. Sights on two celestial bodies give two such lines on the chart, intersecting at the observer's position. That premise is the basis for the most commonly used method of celestial navigation, and is referred to as the "Altitude-Intercept Method."
Matched Categories
Numerology
Chaldean Numerology
The numerical value of celestial navigation in Chaldean Numerology is: 8
Pythagorean Numerology
The numerical value of celestial navigation in Pythagorean Numerology is: 9
Translations for celestial navigation
From our Multilingual Translation Dictionary
Get even more translations for celestial navigation »
Translation
Find a translation for the celestial navigation definition in other languages:
Select another language:
- - Select -
- 简体中文 (Chinese - Simplified)
- 繁體中文 (Chinese - Traditional)
- Español (Spanish)
- Esperanto (Esperanto)
- 日本語 (Japanese)
- Português (Portuguese)
- Deutsch (German)
- العربية (Arabic)
- Français (French)
- Русский (Russian)
- ಕನ್ನಡ (Kannada)
- 한국어 (Korean)
- עברית (Hebrew)
- Gaeilge (Irish)
- Українська (Ukrainian)
- اردو (Urdu)
- Magyar (Hungarian)
- मानक हिन्दी (Hindi)
- Indonesia (Indonesian)
- Italiano (Italian)
- தமிழ் (Tamil)
- Türkçe (Turkish)
- తెలుగు (Telugu)
- ภาษาไทย (Thai)
- Tiếng Việt (Vietnamese)
- Čeština (Czech)
- Polski (Polish)
- Bahasa Indonesia (Indonesian)
- Românește (Romanian)
- Nederlands (Dutch)
- Ελληνικά (Greek)
- Latinum (Latin)
- Svenska (Swedish)
- Dansk (Danish)
- Suomi (Finnish)
- فارسی (Persian)
- ייִדיש (Yiddish)
- հայերեն (Armenian)
- Norsk (Norwegian)
- English (English)
Word of the Day
Would you like us to send you a FREE new word definition delivered to your inbox daily?
Citation
Use the citation below to add this definition to your bibliography:
Style:MLAChicagoAPA
"celestial navigation." Definitions.net. STANDS4 LLC, 2025. Web. 15 Jan. 2025. <https://www.definitions.net/definition/celestial+navigation>.
Discuss these celestial navigation definitions with the community:
Report Comment
We're doing our best to make sure our content is useful, accurate and safe.
If by any chance you spot an inappropriate comment while navigating through our website please use this form to let us know, and we'll take care of it shortly.
Attachment
You need to be logged in to favorite.
Log In